1=(x^2-4)/(x^2-x-6)

Simple and best practice solution for 1=(x^2-4)/(x^2-x-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1=(x^2-4)/(x^2-x-6) equation:


D( x )

x^2-x-6 = 0

x^2-x-6 = 0

x^2-x-6 = 0

x^2-x-6 = 0

DELTA = (-1)^2-(-6*1*4)

DELTA = 25

DELTA > 0

x = (25^(1/2)+1)/(1*2) or x = (1-25^(1/2))/(1*2)

x = 3 or x = -2

x in (-oo:-2) U (-2:3) U (3:+oo)

1 = (x^2-4)/(x^2-x-6) // - (x^2-4)/(x^2-x-6)

1-((x^2-4)/(x^2-x-6)) = 0

(-1*(x^2-4))/(x^2-x-6)+1 = 0

x^2-x-6 = 0

x^2-x-6 = 0

x^2-x-6 = 0

DELTA = (-1)^2-(-6*1*4)

DELTA = 25

DELTA > 0

x = (25^(1/2)+1)/(1*2) or x = (1-25^(1/2))/(1*2)

x = 3 or x = -2

(x+2)*(x-3) = 0

(-1*(x^2-4))/((x+2)*(x-3))+1 = 0

(-1*(x^2-4))/((x+2)*(x-3))+(1*(x+2)*(x-3))/((x+2)*(x-3)) = 0

1*(x+2)*(x-3)-1*(x^2-4) = 0

-x-2 = 0

(-x-2)/((x+2)*(x-3)) = 0

(-x-2)/((x+2)*(x-3)) = 0 // * (x+2)*(x-3)

-x-2 = 0

-x-2 = 0 // + 2

-x = 2 // * -1

x = -2

x in { -2}

x belongs to the empty set

See similar equations:

| 9(3g-5)+6-4g= | | d+d+d+d+e+e+e= | | 6x+44+-10x+65=117 | | X/25=15/35 | | y=-4(3) | | 6x(7x-9)(x+6)=0 | | -3(3p+3)-2(6-14p)=3(8+6p) | | 16x^6-54y^3z^3= | | 8x-2(x-4)=8x+10 | | x+18.1=23.9 | | (4y+4)-(2+3y)=4 | | 5a+7a=7 | | 5(2n+11)(2n+11)(n+5)(n+5)=0 | | x+(-4x)=-9 | | 6(7x-10)=24 | | 2(8x^6+-27y^3z^3)= | | x+1+2x+2=90 | | 2ax^2-4ax+a+1= | | 2x+2+x+1=180 | | 4n+13=-93 | | 6x+33=3(-1+5x) | | 31.02×1026/2×105 | | 9n+14=6n+25 | | 2ax^2-4ax+2a+1= | | 7/8x-5/4=6 | | 9p-2p= | | -2v+2=4v+8 | | 3p^2-3p+10= | | 4w+5y+2w+10y= | | 2(c+6)=24 | | h(t)=-5r^2+20t+60 | | 12-1/10n=-28 |

Equations solver categories